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Poisson statistics were studied using the radioactive decay of *"Cs as a source. A scintillation
counter measured gamma rays emitted by *"Cs as well as background from cosmic rays and other
experiments in the laboratory. Data from approximate mean rates of 1, 4, 10 and 100 counts/sec was
compared to both theoretical Poisson distributions and Monte Carlo simulations. The reduced chi
squared values for the fits to theoretical distributions ranged from 0.57 to 2.13. The values from the
Monte Carlo simulations were within the margin of statistical error of the data. Thus, it was found
that gamma rays from the radioactive decay of '*"Cs with added background events is accurately
modeled by Poisson statistics, so each decay event in a bulk source is a random, independent event.

1. INTRODUCTION

Poisson statistics describe random, independent events
that occur at a fixed mean rate u. Each decay event in a
bulk source of '37Cs is random, independent and occurs
at a fixed mean rate p, so we can model this radioactive
decay using Poisson statistics. The Poisson distribution
can be considered to be a limiting case of the binomial
distribution, and the Gaussian distribution can be con-
sidered to be a limiting case of the Poisson distribution.
We review the theoretical basis for these three important
probability distributions, then compare our experimental
results to both theoretical and simulated results.

2. THEORY
2.1. The Binomial Distribution

The binomial distribution(2) describes the probability
Pp(x) describes the probability of observing z of n total
items to be in a certain state with probability p. There
are number of ways to choose = of n items is,

(&)= 7 »

The z events occur with probability p each, and the
(n — x) events occur with probability (1 — p) each, so
with we have the binomial distribution,

PB(I) = xl(nnlx)'pf(l 7p)nfx (2)
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2.2. The Poisson Distribution

The Poisson distribution can be derived from the bino-
mial distribution by letting n — oo and fixing the mean
rate 4 = np. KEquivalently, we can let p — 0. Then
there is no longer a fixed number of possible events, so
each new event does not depend on the number of evens
that has already occured, so the events are statistically
independent. In the limit, we have,

(nﬁ!x)!Zn(n—l)...(n—x—Z)(n_x_l):nm (3)

2.3. The Gaussian Distribution

It is interesting to note that in the for a large mean
counting rate p, the Poisson distribution approaches the
Gaussian distribution,

Po(x;u) =
G(H)O'Qﬂ' o\ T,

[1]

Figure 1 shows a comparison between the theoretical
Poisson distribution and the theoretical Gaussian distri-
bution for u = 4 counts/sec. Even here, we see a good
agreement between the two distributions, with a reduced
chi squared value of 0.19. As p increases, the agreement
becomes better.

3. EXPERIMENT

a. Figure 2 shows a schematic of the experimental
setup. A bulk sample of '*"Cs was used as a gamma ray
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FIG. 1: A comparison of the Poisson distribution and the
Gaussian distribution for 4 = 4 counts/sec. Even at this
low u value, the Gaussian distribution falls within statistical
error of the Poisson distribution. As u was increased, the two
distributions were found to quickly converge.

source. 37Cs emits a gamma particle when it undergoes
radioactive decay. In a large sample, each gamma emis-
sion is a random, statistically independent event, and
emissions occur at a fixed mean rate. Other background
gamma rays included cosmic rays and gamma rays from
other experiments in the laboratory. We assume that
these background events also occur at a fixed mean rate.

b. The gamma rays then passed through an Nal
scintillator. In a scintillator, photons excite the crystal
and lose some energy in the process, then the excited
crystal emits photons. The photons from the scintillator
then traveled to the photomultiplier tube. In a photo-
multiplier tube, photons first strike the photocathode at
the end and eject electrons due to the photoelectric effect.
The high voltage power supply maintains a large poten-
tial difference between the two ends of the photomulti-
plier tube. Dynodes, a kind of electrode, are arranged
down the tube with increasing voltage. Electrons travel
down the tube and gain energy, then striking a dynode
and releasing more electrons. This causes an avalanche
of electrons, and finally an electrical pulse at the pho-
tomultiplier tube output. Typical gains of such dynode
chains range from several thousand to one million.[2]

c. The electrical pulse from the photomultiplier
was passed through a preamplifier and then an amplifier,
which both amplified the signal. The amplified signal
was then passed through a discriminator, which rejected
all pulses below a certain threshold voltage. Finally, the
signal from the discriminator was passed to the counter.
The counter counted how many pulses it received in ad-
justable, fixed time intervals.

d. We expected the pulse output from the pream-
plifier and the pulse output from the amplifier to be in
one to one correspondence, but instead we found that the

number of signals coming out of the amplifier was orders
of magnitude greater than the number of signals coming
out of the preamplifier. Possible causes of this discrep-
ancy were that the the amplifier was picking up signals
that did were not triggered on the oscilliscope we were
using to view these pulses, and that the amplifier was
picking up noise from the preamplifier. However, as long
as the pulses coming out of the amplifier were statisti-
cally independent and occured at a fixed mean rate, any
discrepancy would not affect our experimental results.
Another issue was that the timer on our counter was cal-
ibrated incorrectly. When the timer counted 1 second,
approximately 4 seconds actually passed. So, when we
wanted the counter to count the number of events in 1
second, we actually adjusted the time to 0.6 seconds to
achieve approximate 1 second invervals. For the rest of
this paper, let “1 second” mean “0.6 seconds as defined
by our faulty counter.” A real second and our approx-
imate second can be used interchangeably, because as
long as our approximate second was consistent, it does
not affect our Poisson statistics analysis.
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FIG. 2: Schematic of the experimental setup. Adapted from
lab guide[3].

4. DATA AND ANALYSIS

e. We measured the number of counts that occured
in 1 second 100 times for fixed mean rates p of approx-
imately 1, 4, 10 and 100 counts per second. The actual
fixed mean rates p we achieved were 0.98, 3.69, 8.02 and
102.92 counts/sec. We also measured the count numbers
for 4 long 100 second trials, one for each of the mean
counting rates. We set the timer differently for the short
and long trials so that the time of the long 100 second
trial was not equal to the time of 100 of the 1 second
trials. Therefore, we could make no comparison of the
two, so the long trials are not included in this analysis.

f The main source of error in all of our measure-
ments was assumed to be statistical and to follow Poisson



statistics, so the error on a single measured number x was
always assumed to be /z. When the final reported value
was a function of many measurements x; each with error
\/Zj, we used error propogation techniques to find the
error on the calculated value.[1]

g. First, we checked that our events occured at a
fixed mean rate by plotting the cumulative average of
1 as a function of the count number. Figure 3 shows
this plot for u ~ 4. For p ~ 1, 4, 10 and 100, we saw
the average p converge to a value, so we can conclude
that the mean count rate did not fluctuate over the time
scales we were considering. These cumulative averages
with errors are listed in table I.
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FIG. 3: Cumulative average of the gamma ray detection rate
u for p =~ 4 counts/sec. p varies between 1.50 and 4.33
counts/sec, and the series of average values eventually con-
verges around p = 3.69 counts/sec. The plots of the cumula-
tive average for u = 1, 10 and 100 counts/sec behave similarly.

h. Then we checked the frequency distributions of
our data for p = 1, 4, 10 and 100 against theoretical
Poisson distributions for our measured average u of 0.98,
3.69, 8.02 and 102.92 counts/sec. The theoretical fre-
quency distributions were generated by multiplying the
Poisson probability distribution (5) by 100, for the 100
data points. The plot for y = 8.02 counts/sec is shown
in figure 4, and the plots for the other p are similar. The
reduced chi squared values of our theoretical fits to our
measured data are x2_; = 0.94, 1,20, and 0.57 for p =
0.98, 3.69, 8.02 and 102.92 counts/sec, respectively.

i. In addition to our theoretical fits, we also ran
Monte Carlo simulations in Matlab that generated Pois-
son distributions for our input u that matched our calcu-
lated average p of 0.98, 3.69, 8.02 and 102.92 counts/sec.
Like in our experiment, we took the counts simulated in
100 1 second intervals, and made frequency plots. A plot
of a typical Monte Carlo output for 4 = 8.02 is shown in
figure 5. For a given p, we ran the simulation 10 times
and calculated 10 different p and 10 different o, the stan-
dard deviation of each set of 100 values. We then calcu-
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FIG. 4: Measured frequency distribution with a calculated
u = 3.69 £ .19 counts/sec plotted against a theoretical pois-
son distribution with p = 3.69 counts/sec. The theoretical
and experimental distributions agree well, with a reduced chi
squared value y,_1 of 2.13. Comparisons were also done for
@ =0.98,8.02 and 102.92 counts/sec with x,—1 of 0.94, 1.20,
and .57, respectively.

lated our errors on those simulated values by finding the
standard deviations of the set of 10 values. A comparison

between experimental and simulated p and o is shown in
table (I).
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FIG. 5: Monte Carlo-generated Poisson distribution with in-
put p = 8.02 counts/sec. Output from 8.13 Matlab script.

5. CONCLUSIONS

The fits of our data to theoretical Poisson distribu-
tions have x2_, values of 0.94, 1.20, 2.13, and 0.57 for
u = 0.98, 3.69, 8.02 and 102.92 counts/sec, respectively,
indicating a good fit for every value of u. In addition,



‘ wa1/s ‘ wr4/s ‘ ple/S‘ =2 100/s

Toens| 0.9840.10 | 3.69 4 0.19] 8.02 £ 0.28| 102.92 £ 1.01
Tm | 0.94£0.11 | 3.68+£0.11| 7.95 + 0.34| 102.62 + 0.67
Omeas| 112+ .23 | 1.69+.17 | 3.044+0.21| 10.07 £ 0.20
Osim | 0.98+0.083] 1.90 +0.11| 2.79 +0.18| 10.17 4+ 0.78

TABLE I: Measured mean rate [i,,.,,, simulated mean rate
Ty, Mmeasured standard deviation omeas, and simulated stan-
dard deviation ogm of each of the four 100-trial distributions.

simulated data using Monte Carlo methods and an as-
sumed Poisson distribution is within the statistical error
of our experimental data. Therefore, we can conclude
that the radioactive decay of '37Cs is a Poisson process.
That is, radioactive decay events in a bulk sample of
137Cs are statistically independent and occur at a fixed
mean rate. We can also conclude that gamma rays from
background sources in the laboratory were Poisson.
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